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1 Introduction

Over the past few years, a wide range of general large language models (LLMs), such as PaLM [11]], LLaMA [72, 73],
GPT-series [56] 6, 49], and ChatGLM [14] 89]] have emerged and advanced the state-of-the-art in various natural
language processing (NLP) tasks, including text generation, text summarization, and question answering. Inspired
by the great success of general LLMs, the development and application of medical LLMs have gained growing
research interests as they aim to assist medical professionals and improve patient care [3,70,153]]. To this end, several
endeavors have been made to adapt general LLMs to the healthcare domain, leading to the emergence of medical LLMs
(64,165, 23] 75 71,138 182]. For example, based on PaLM [11]], MedPaLM [64] and MedPalLM-2 [65] have achieved a
competitive score of 86.5 compared to human experts (87.0 [81]]) in the United States Medical Licensing Examination
(USMLE) [31]]; based on publicly available LLMs, e.g., LLaMA [72, 73|}, several medical LLMs, including ChatDoctor
[38], MedAlpaca [23], PMC-LLaMA [81], BenTsao [75], and Clinical Camel [71], have been introduced.

Although existing medical LLMs have achieved promising results, there are some key issues in their development
and application that need to be addressed. Firstly, many of these models primarily focus on biomedical natural language
processing (NLP) tasks, such as dialogue and question answering, often overlooking their practical utility in clinical
practice [[70]. Recent research has begun to explore the potential of medical LLMs in various clinical scenarios,
including electronic health records (EHRs) [[83}80], discharge summary generation [53[], health education [59], and
care planning [[16]]. Moreover, most existing medical LLMs evaluate their performances mainly on medical question
answering and dialogue generation tasks, neglecting other biomedical tasks, such as text summarization, relation
extraction, and information retrieval. These challenges pose a gap in the current research and application of LLMs in
healthcare.

2 Related work

In this section, we will discuss some widely studied downstream tasks in the biomedical NLP domain. There are many
more downstream tasks in this domain, such as Natural Language Inference, Text Simplification, Semantic Textual
Similarity, and Relation Extraction, but those tasks we won’t introduce here have similar natures to the tasks we will
discuss below.

2.1 Entity Extraction

To perform the NER task, for each input token, the LLMs output a dense representation, which not only embeds the
tokens but also includes its relation with other tokens in the text. Therefore, with the dense representations of input
tokens extracted as vectors, additional layers are applied to the last Transformer layer to fit the downstream entity
extraction task. The widely-used additional layers are softmax, BILSTM [27], CRF [67, 188]], and their combinations
[55. 167,117, 188117, 133]. Gu et al. [20] proposed a distillation method that uses few-shot GPT-3.5 to extract the correct
entities and create the training set for the student model. This method shows that GPT models can be used to label
the dataset first to achieve unsupervised learning. Wang et al. [77] defined a new prompting method: self-questioning
prompting (SQP). The idea of this prompting method is to let the GPT model ask questions about the given text and



then asks the GPT to answer those question to extract useful information for specific tasks. Wang et al. [77] further
evaluated the performances of BARD, GPT-3.5, and GPT-4 with SQP and achieved some SOTA results.

2.2 Text Classification

It is a classic classification problem: assigning predefined labels to a text, and it is common for a text to have multiple
labels to describe it. Since it is a text-level task, the [CLS] vector is augmented when using transformer-based models.
[CLS] does not correspond to any existing token in the sentence. Instead, it is manually augmented for the model to
learn the information of all tokens, hence further being used to classify the relation. Another approach to distilling the
overall information is to use the weighted sum of final attention layer outputs. There are works showing that adding a
custom attention layer after the original model (BERT) improves the performance [69,[79]. There are also some works
combining graph-based models with GPT models. ChatGraph [61]] used ChatGPT to extract text information and apply
it to a graph-based model that outperforms GPT models. CohortGPT [21] used Chain-of-Thought (CoT) prompting and
knowledge graph to outperform few-shot ChatGPT and GPT-4. McCreery et al. [44] double-fine-tuned the BERT model
in the sense that they first fine-tuned the model on a general dataset and then fine-tuned it on a medical-specific dataset.

2.3 Information Retrieval

Information retrieval (IR) plays an important role in the clinical area. It is the process of retrieving relevant knowledge
or information related to the query from a number of unstructured data. Jin et al. [32] developed a BERT-based model
BioCPT that encodes the query and articles for the ranking task. They split the method into training, inference, and
evaluation steps. In the training step, they introduced query-to-document loss and document-to-query loss to train the
encoders for the query and articles. In the inference step, they concatenate the encoding of the query and its best-fit
article d{ together with & — 1 non-relevant articles (d,d%, - - , d) found by maximum inner product search (MIPS)
to further train the model to rank df at the top. Sun et al. [68] applied zero-shot ChatGPT to rank the most relevant
documents without abnormal prompting. They also further used GPT-4 to re-rank the top 30 documents retrieved by
ChatGPT. Abonizio et al. [1] introduced two LLM-based data augmentation methods, namely InPars and Promptagator,
for IR. For InPars, they used GPT-3 and GPT-J to generate a new query for a randomly selected document. They used
few-shot prompting which provides the model with good query examples or bad query examples. For Promptagator,
the major difference is that a more dataset-specific prompting is applied. Ateia and Kruschwitz [4] proposed a query
expansion technique that expands the current query into a more comprehensive query, which consistently improves
the performance of any successive tasks. It is done purely by the GPT model with regular instructional prompting.
Similarly, Wang et al. [76] used ChatGPT to generate more refined Boolean queries for systematic reviews. They
showed that ChatGPT is able to generate or refine queries with higher precision.

2.4 Text Summarization

For extractive summarization, the key point is to define some scoring system that scores all sentences and hence finds
the most important ones. Moradi et al. [47] used a clustering-based method to summarize medical texts. They vectorize
the tokens of the text by BERT and cluster the sentence vector into k clusters, then they define an informativeness score
that chooses one sentence from each cluster to form a summary. Moradi et al. [46] used the graph-based model to
summarize. They treated sentences as nodes and relations as edges. The relations are measured by calculating the
cosine similarity of vectors representing the sentences. They then used different graph ranking algorithms to choose
important sentences as a summary. Du et al. [13]] used purely the transformer-based model as the scoring system.
They tokenized the whole text with [CLS] and [SEP] augmented. They further augmented the corresponding sentence
and token positions to each token and fed the whole vector into the model. A sigmoid layer is added to the model so
the output is between zero and one, and the output is considered the score for each sentence. Since the transformer
automatically extracts relations of one sentence to others, Du et al. don’t need to design a score manually. Chen et al.
[9] also relied only on the model to score the sentences. The difference is that they used AlphaBERT and the training is
split into pre-training and fine-tuning. Mclnerney et al. [45] combined the summarization model with a query to output
more specific summaries. Pang et al. [52]] proposed a principled inference framework with top-down and bottom-up
inference techniques to improve summarization models. There are also works about summarizing more than one text at
a time. Those works mainly relied on graph-based or transformer-based models to extract relations between different
texts [8]. Zhang et al. [90] applied one-shot GPT-3.5, using dialogues and summaries from the same category as



prompts to generate abstractive summarization. More studies are needed to qualitatively analyze the performance of
GPT models on biomedical text summarization [60].

2.5 Question Answering

For multiple-choice-orientated QA, the question is considered a classification problem. Similar to TC (see Sec[2.2), a
common approach is to apply an MLP layer on the final [CLS] vector for classification. For free-text-orientated QA,
the common approach is to use IR (see Sec[2.3). Models need to extract the most relevant tokens from the related
documents to generate answers. As a result, some QA models are multi-tasked [2]. Since biomedical QA datasets are
relatively small in size compared to general datasets, using pre-trained models from general datasets and then finetuning
them on the biomedical data improves the performance [66, [87]. Masking strategy is also well-used in QA. For a
document, the model will randomly mask some tokens and try to predict the masked unknown tokens. The trained
models then can be used to predict relevant tokens about the query. Pergola et al. [54] proposed a biomedical-specific
masking method. Instead of masking tokens randomly, the model will identify biomedical-related tokens and mask
them to focus more on in-domain learning. Like what we discussed in the IR subsection, hallucination also threatens
the quality of outputs in QA. One way is to use biomedical search systems like Almanac [26]]. Another approach is to
use extra datasets as an augmentation for the QA task. There are many chatbots based on LLM QA, such as Clinical
Camel [71], DoctorGLM [82]], ChatDoctor [38], HuaTuo [75], HuaTuoGPT [91]], and MedAlpaca [23]. Except for a
few [36]], most chatbots are a black box the the consumers, so further studies of those chatbots are required.

3 Research Questions and Methodology

LLMs have emerged as promising tools for applications in the medical and healthcare fields. However, their integration
is not without challenges. This section covers the challenges of using LLMs in the medical field.

3.1 Hallucination

Hallucination of LLMs refers to the phenomenon where the generated output contains inaccurate or nonfactual
information. It can be categorized into intrinsic and extrinsic hallucinations [30, 74, 57]]. Intrinsic hallucination refers
to generating outputs logically contradicting factual information - such as LLMs generating wrong calculations of
mathematical formulas [30]. Extrinsic hallucination happens when the output generated cannot be verified - typical
examples include LLMs ‘faking’ citations that do not exist or ‘dodging’ the question. When integrating LLMs into
the medical domain, fluent but nonfactual LLM hallucinations can lead to the dissemination of incorrect medical
information, which can cause misdiagnoses, inappropriate treatments, and harmful patient education. Given the
criticality of the medical domain, it is vital to ensure the accuracy of LLM outputs.

Potential Solutions Current solutions to mitigate LLM hallucination can be categorized into training-time correction,
generation-time correction, and retrieval-augmented correction. The first solution, training-time correction, aims
to mitigate hallucination by adjusting model weights and thus reducing the probability of generating hallucinated
outputs. Examples of training-time correction include factually consistent reinforcement learning [58]] and contrastive
learning[[10]]. Another solution to reduce hallucination is to add a ‘reasoning’ process to the LLM inference to ensure
reliability. Methods include drawing multiple samples [43] or using a confidence score to identify hallucination before
the final generation. The third approach is the retrieval-augmented correction method, which utilizes external resources
to help mitigate hallucination. For example, using factual documents as prompts [[63]] or chain-of-retrieval prompting
technique [12].

3.2 Lack of Evaluation Benchmarks and Metrics

With the emerging ability of general-purpose LLMs, current benchmarks and metrics fail to evaluate LLM’s overall
capabilities, especially in the medical domain. Current benchmarks such as MedQA (USMLE) [31] and MedMCQA
[S1] offer extensive coverage on question-answering tasks but fail to evaluate important LLM-specific metrics such as
trustworthiness, faithfulness, helpfulness and explainability. The need for more domain and LLM-specific benchmarks
and metrics is emerging.



Potential Solutions New benchmarks should include capabilities like sourcing from authoritative medical references,
adapting to the evolving landscape of medical knowledge, and clearly communicating uncertainties [64]. Additionally,
considering the sensitive nature of healthcare, these benchmarks should also assess factors such as fairness, ethics, and
equity, which, though crucial, pose quantification challenges [64]. The aim is to create benchmarks that more effectively
mirror actual clinical scenarios, thus providing a more accurate measure of LLMs’ suitability for medical advisory
roles. Current LLM research in medicine has largely focused on general medicine, likely due to the greater availability
of data in this area [64} 65, 24]]. However, this focus has resulted in the underrepresentation of LLM applications in
specialized fields like ‘rehabilitation therapy’ and ‘sports medicine’. Despite initiatives to incorporate physical activity
(PA) into healthcare systems, implementation remains challenging, particularly in developing countries with limited PA
education among healthcare providers [42]. We could disseminate accurate PA knowledge and aid in the creation of
personalized PA programs. Such applications could significantly enhance PA levels, improving global health outcomes,
especially in resource-constrained environments.

3.3 Domain Data Limitations

Current datasets in the medical domain remain relatively small compared to datasets used to train general-purpose
LLMs. The medical knowledge domain is vast; existing datasets are limited and do not cover the entire space [64]]. This
results in LLMs exhibiting extraordinary performance on open benchmarks with extensive data coverage yet falling
short on real-life tasks such as differential diagnosis and personalized treatment planning [65].

Potential Solutions Although the volume of medical and health data is large, most require extensive ethical, legal,
and privacy procedures to be accessed. In addition, these data are often unlabeled, and solutions to leverage these data,
such as human labelling and unsupervised learning [39], face challenges due to the lack of human expert resources and
small margins of error. Current state-of-the-art approaches [64], [65], [38l], prefer to fine-tune on smaller open-sourced
datasets to improve models’ domain-specific performances. Another solution is to generate high-quality synthetic
datasets using LLMs to broaden the knowledge coverage [22]]. However, several works have discovered that training on
generated datasets causes models to forget [62]. Therefore, future research is needed to validate the effectiveness of
using synthetic data for LLMs in the medical field. Also, current datasets fail to capture the differences in race and
language. We could work on such new datasets.

3.4 New Knowledge Adaptation

LLM:s are trained on extensive data to learn knowledge. Once the LLM is trained, injecting new knowledge through
re-training is expensive and inefficient. Two problems occur when a knowledge update is required (for example, a new
adverse effect of a medication, or a novel disease): The first problem is how to make LLMs ‘forget’ the old knowledge -
it is almost impossible to remove all ‘old knowledge’ from the training data, and the discrepancy between new and old
knowledge can cause unintended association and bias [28]]. The second problem is the timely addition of knowledge -
how do we ensure the model is updated in real-time? These problems pose significant barriers to using LLMs in medical
fields, where accurate and timely update of up-to-date medical knowledge is crucial in real-world implementations.

Potential Solutions We can categorize current solutions into model editing and retrieval-augmented generation.
Model editing [85] refers to altering the model’s knowledge by modifying the model’s parameters. These methods
do not generalize, and their effectiveness varies across different model architectures. The second solution is retrieval-
augmented generation, which provides external knowledge sources as prompts during model inference. For example,
Lewis et al. [35] enabled model knowledge updates by updating the model’s external knowledge memory.

3.5 Behaviour Alignment

Behaviour alignment refers to the process of ensuring that the LLM’s behaviours align with the objectives of its task.
While efforts are spent aligning LLMs with human behaviour, the behaviour discrepancy between general humans
and medical professionals remains challenging for adopting LLMs in the medical domain. For example, ChatGPT’s
answers for medical consultations are not as concise and professional as the human expert’s answers [50]]. In addition,
misalignment may introduce unnecessary harm and ethical concerns [25]] that lead to undesirable consequences in the
medical domain.



Potential Solutions Current solutions include instruction fine-tuning, reinforcement learning from human feedback
(RLHF) [5,150], and prompt tuning [34}41]. Instruction fine-tuning [78]] refers to improving the performance of LLMs
on specific tasks based on explicit instructions. For example, Ouyang et al. [50] used this technique to help LLMs
generate less toxic and more suitable outputs. RLHF is a reinforcement learning technique that uses human feedback to
evaluate and align the outputs of LLMs. It has proven effective in multiple tasks, such as helping LLMs become helpful
chatbots [[19] and decision-making agents [48]]. Prompt tuning can also align LLMs to the expected output format. For
example, Liu et al. [40] uses a prompting strategy, chain of hindsight, to enable the model to detect and correct its
errors, which aligns the generated output with human expectations.

3.6 Multimodal LLM Integrated with Time-Series, Visual, and Audio Data

Multimodal LLMs (MLLMs), or Large Multimodal Models (LMMs), are LLM-based models designed to perform
multimodal tasks [[86]. While LLMs primarily address NLP tasks, MLLMs support a broader range of tasks, such
as comprehending the underlying meaning of a meme [84] and generating website codes from images [92]. This
versatility suggests promising applications of MLLMs in medicine. For example, recent works have introduced an
MLLM-based framework that integrates vision, audio, and language inputs for automated diagnosis in dentistry [29].
However, there are only very few medical LLMs that can process time series data, such as electrocardiograms (ECGs)
[37] and sphygmomanometers (PPGs) [[15]. These time series data are important for medical diagnosis and monitoring.
We could inherit the knowledge of audio models into time series data. Moreover, like LLMs, MLLM:s are associated
with data privacy and quality challenges. The multimodal nature of MLLM also introduces unique issues, including
limited perception capabilities [29]][92], fragile reasoning chains [18]], sub-optimal instruction-following ability [L18]],
and object hallucination [92]]. Therefore, more research is needed to address these issues, ensuring a safe and effective
application of MLLM in medicine.

4 Conclusion

For potential research in the biomedical NLP domain, we introduced some interesting areas that still need further
research, including Hallucination, Evaluation of Benchmarks and Metrics, Domain Data Limitations, New Knowledge
Adaptation, Behaviour Alignment, and Multimodal LLM. We plan to focus first on the introduction of new benchmarks,
and then use the new benchmarks to deal with the hallucination issue. Finally, we will turn our model multimodal with
the time-series data.
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